176 Chapter 4: Connectivity and Paths

4.3. Network Flow Problems

Consider a network of pipes where valves allow flow in only one direction.
Each pipe has a capacity per unit time. We model this with a vertex fur each
junction and a (directed) edge for each pipe, weighted by the capacity. We also
assume that flow cannot accumulate at a junction. Given two locations s, ¢ in
the network, we may ask “what is the maximum flow (ger unit time) from s to ?”

This question arises in many contexts. The network may represent roads
with traffic capacities, or links in a computer network with data transmission
capacities, or currents in an electrical network. There are applications in in-
dustrial settings and to combinatorial min-max theorems. The seminal book on
the subject is Ford—Fulkerson [1962]. More recently, Ahuja—Magnanti-Orlin
[1993] presents a thorough treatment of network flow problems.

4.3.1. Definition. A network is a digraph wiih a nonnegative capacity c(e)
on each edge ¢ and a distinguished source vertex s and sink vertex r.
Vertices are also called nodes. A flow f assigns a value f(e) to each elge
e. We write f*(v) for the total flow on edges leaving v and f~(v) for the
total flow on edges entering v. A flow is feasible if it satisfies the ca-
pacity constraints 0 < f(e) < c(e) for each edge and the conservation
constraints f(v) = f~(v) for each node v ¢ {s, t}.

MAXTMUM NETWORK FLOW

We consider first the problem of maximizing the net flow into the sink.

4.3.2. Definition. The value val(f) of a flow f is the net flow f~(t) — f(1)
into the sink. A maximum flow is a feasible flow of maximum value.

4.3.3. Example. The zero flow assigns flow 0 to each edge; this is feasible.
In the network below we illustrate a nonzero feasible flow. Each capacities are
shown in bold, flow values in parentheses. Our flow f assigns f(sx) = f(vt) =
0, and f(e) = 1 for every other edge e. This is a feasible flow of value 1.

A path from the source to the sink with excess capacity would allow us to
increase flow. In this example, no path remains with excess capacity, but the

Section 4.3: Network Flow Problems 177

flow f’ with f'(vx) = 0 and f'(e) = 1 for ¢ % vx has value 2. The flow f is
“maximal” in that no other feasible flow can be found by increasing the flow on
some edges, but f is not a maximum flow.

We need a more general way to increase flow. In addition to traveling
forward along edges with excess capacity, we allow traveling backward (against
the arrow) along edges where the flow is nonzero. In this example, we can
travel from¥ to x to v to r. Increasing the flow by 1 on sx and vt and decreasing
it by one on vx changes f into f’. []

4.3.4. Definition, When f is a feasible flow in a network N, an f-augmenting
path is a source-to-sink path P in the underlying graph G such that for
each ¢ € E(P),

a) if P follows e in the forward direction, then f(e) < c(e).

b) if P follows e in the backward direction, then f(e) > 0.
Let €(e) = c(e) — f(e) when e is forward on P, and let €(¢) = f(e) when e is
backward on P. The tolerance of P is min g p)€(€).

As in Example 4.3.3, an f-augmenting path leads to a flow with larger
value. The definition of f-augmenting path ensures that the tolerance is posi-
tive; this amount is the increase in the flow value.

4.3.5. Lemma. If P is an f-augmenting path with tolerance z, then changing
flow by +z on edges followed forward by P and by —z on edges followed
backward by P produces a feasible flow f’ with val(f’) = val(f) + z.

Proof: The definition of tolerance ensures that 0 < f'(e) < c(e) for every edge
e, so the capacity constraints hold. For the conservation constraints we need
only check vertices of P, since flow elsewhere has not changed.

The edges of P incident to an internal vertex v of P occur in one of the four
ways shown below. In each case, the change to the flow out of v is the same as
the change to the flow into v, so the net flow out of v remains 0 in f’.

Finally, the net flow into the sink ¢ increases by z. =
+ v + + v —
- v + - U =
‘.—'— _‘—.—*—

The flow on backward edges did not disappear; it was redirected. In ef-
fect, the augmentation in Example 4.3.3 cuts the flow path and extends each
portion to become a new flow path. We will soon describe an algorithm to find
augmenting paths.

Meanwhile, we would like a quick way to know when our present flow is a
maximum flow. In Example 4.3.3, the central edges seem to form a “bottleneck”;
we only have capacity 2 from the left half of the network to the right half. This
observation will give us a PROOF that the flow value can be no larger.

178 . Chapter 4: Connectivity and Paths

4.3.6. Definition. In a network, a source/sink cut [S, T] consists of the edges
from a source set S to a sink set 7, where § and T partition the set
of nodes, with s € S and r € T. The capacity of the cut [S, T], written
cap(S, T'), is the total of the capacities on the edges of [S, T].

Keep in mind that in a digraph [S, T'] denotes the set of edges with tail in
S and head in T. Thus the capacity of a cut [S, T'] is completely unaffected by
edges from T to S. ,

Given a cut [S, T1, every s, t-path uses at least one edge of [S, T], so intu-
ition suggests that the value of a feasible flow should be bounded by cap(S, T).
To make this precise, we extend the notion of net flow to sets of nodes. Let
fH(U) denote the total flow on edges leaving U, and let f~(U) be the total flow
on edges entering U. The net flow out of U is then f*(U) — f~(U).

4.3.7. Lemma. If U is a set of nodes in a network, then the net flow out of U
is the sum of the net flows out of the nodes in UU. In particular, if f is a
feasible flow and [S, T] is a source/sink cut, then the net flow out of S and
net flow into T equal val(f).

Proof: The stated claim is that
ffO) = W) =, ylf*) - -l

We consider the contribution of the flow f(xy) on an edge xy to each side of
the formula. If x, y € U, then f(xy) is not counted on the left, but it contributes
positively (via f*(x)) and negatively (via f~(y)) on the right. If x, y ¢ U, then
f(xy) contributes to neither sum. If xy € [U, U], then it contributes positively to
each sum. If xy € [U, U], then it contributes negatively to each sum. Summing
over all edges yields the equality.

When [S, T']is a source/sink cut and f is a feasible flow, net flow from nodes
of § sums to f*(s) — f~(s), and net flow from nodes of T sums to f*(t) — f~(1),
which equals —val(f). Hence the net flow across any source/sink cut equals
both the net flow out of s and the net flow into ¢. []

4.3.8. Corollary. (Weak duality) If f is a feasible flow and [S, T] is a source/sink
cut, then val(f) < cap(S, T).

Proof: By the lemma, the value of f equals the net flow out of §. Thus
val(f) = fY(S) — f7(S) < f1(S),

since the flow into S is no less than 0. Since the capacity constraints require
F¥(S) < cap(S, T), we obtain val(f) < cap(S, T). []

Section 4.3: Network Flow Problems 179

Among source/sink cuts, one with minimum capacity yields the best bound
on the value of a flow. This defines the minimum cut problem. The max flow
and min cut problems on a network are dual optimization pmblems.T Given a
flow with value ¢ and a cut with value «, the duality inequality in Corollary
4.3.8 PROVES that the cut is a minimum cut and the flow is a maximum flow.

If every instance has solutions with the same value to both the max prob-
lem and the min problem (“strong duality”), then a short proof of optimality
always exists. This does not hold for all dual pairs of problems (recall matching
and covering in general graphs), but it holds for max flow and min cut.

The Ford—Fulkerson algorithm seeks an augmenting path to increase the
flow value. If it does not find such a path, then it finds a cut with the same
value (capacity) as this flow; by Corollary 4.3.8, both are optimal. If no infi-
nite sequence of augmentations is possible, then the iteration leads to equality
between the maximum flow value and the minimum cut capacity.

4.3.9. Algorithm. (Ford—Fulkerson labeling algorithm)
Input: A feasible flow f in a network.
Output: An f-augmenting path or a cut with capacity val(f).
Idea: Find the nodes reachable from s by paths with positive tolerance. Reach-
ing t completes an f-augmenting path. During the search, R is the set of nodes
labeled Reached, and § is the subset of R labeled Searched.
Initialization: R = (s}, S = @.
Iteration: Choosev € R — S.

For each exiting edge vw with f(vw) < e(vw) and w ¢ R, add w to R.

For each entering edge uv with f(uv > 0) and v ¢ R, add u to R.
Label each vertex added to R as “reached”, and record v as the vertex reaching
it. After exploring all edges at v, add v to S.

If the sink ¢ has been reached (put in R), then trace the path reaching ¢
to report an f-augmenting path and terminate. If R = §, then return the cut
[S, 5] and terminate. Otherwise, iterate. E

4.3.10. Example. On the left below is the network of Example 4.3.3 with the
flow f. We run the labeling algorithm. First we search from s and find excess
capacity to ¥ and x, labeling them reached. Nowwe haveu,v € R —S. There
is no excess capacity on uv or xy, so searching from u reaches nothing, and also

(1

¥ (D1 y

TThe precise notion of “dual problem” comes from linear programming. For our pur-
poses, dual problems are a maximization problem and a minimization problem such
that a < b whenever a and b are the values of feasible solutions to the max problem and
min problem, respectively. See Section 8.1 for further discussion.

180 Chapter 4: Connectivity and Paths

searching from x does not reach y. However, there is nonzero flow on vx. Thus
we label v from x. Now v is the only element of R — §, and searching from v
reaches . We labeled ¢ from v, v from x, and x from s, so we have found the
augmenting path s, x, v, 7.

The tolerance on this path is 1, so the augmentation increases the flow
value by 1. In the new flow f’ shown on the right, every edge has unit flow
except f'(vx) = 0. When we run the labeling algorithm again, we have excess
capacity on su and sx and can label {u, x}, but from these nodes we can label no
others. We terminate with R = § = {s, u, x}. The capacity of the resulting cut
[S, 51 is 2, which equals val(f’) and proves that f’ is a maximum flow.]

Repeated use of the labeling algorithm allows us to solve the maximum
flow problem and prove the strong duality relationship.

4.3.11. Theorem. (Max-flow Min-cut Theorem—Ford and Fulkerson [1956]) In
every network, the maximum value of a feasible flow equals the minimum
capacity of a source/sink cut.

Proof: In the max-flow problem, the zero flow (f(e) = O for all ¢) is always a
feasible flow and gives us a place to start. Given a feasible flow, we apply the
labeling algorithm. It iteratively adds vertices to S (each vertex at most once)
and terminates with ¢+ € R (“breakthrough”) or with S = R.

In the breakthrough case, we have an f-augmenting path and increase the
flow value. We then repeat the labeling algorithm. When the zapacities are
rational, each augmentation increases the flow by a multiple of 1/a, where a
is the least common multiple of the denominators, so after finitely many aug-
mentations the capacity of some cut is reached. The labeling algorithm then
terminates with § = R.

When terminating this way, we claim that [S, T] is a source/sink cut with
capacity val(f), where T = S and f is the present flow. It is a cut because s € §
and ¢ ¢ R = §. Since applying the labeling algorithm to the flow f introduces
no node of T into R, no edge from S to T has excess capacity, and no edge from
T to S has nonzero flow in f. Hence f*(S) = cap(S,7) and f~(S) =0.

Since the net flow out of any set containing the/source but not the sink is
val(f), we have proved

val(f) = F*(S) — f~(S) = F*(S) =cap(S.T). "

This proof of Theorem 4.3.11 requires rational capacities; otherwise, Algo-
rithm 4.3.9 may yield augmenting paths forever! Ford and Fulkerson provided
an example of this with only ten vertices (see Papadimitriou—Steiglitz [1982,
p126-128]). Edmonds and Karp [1972] modified the labeling algorithm to use
at most (n® — n)/4 augmentations in an n-vertex network and work for all real
capacities. As in the bipartite matching problem (Theorem 3.2.22), this is done
by searching always for shortest augmenting paths. Faster algorithms are now
known; again we cite Ahuja—Magnanti—Orlin [1993] for a thorough discussion.

“Introduction to Graph Theory” - West — 2da. Ed.

