CHAPTER 13

MATRICES

In orderly disorder they

Wait coldly columned, dead, prosaic.
Poet, breathe on them and pray
They burn with life in your mosaic.
J. Luzzato

A graph is completely determined by either its adjacencies or its incidences.
This information can be conveniently stated in matrix form. Indeed, with a
given graph, adequately labeled, there are associated several matrices,
including the adjacency matrix, incidence matrix, cycle matrix, and cocycle
matrix. It is often possible to make use of these matrices in order to identify
certain properties of a graph. The classic theorem on graphs and matrices
is the Matrix-Tree Theorem, which gives the number of spanning trees in
any labeled graph. The matroids associated with the cycle and cocycle
matrices of a graph are discussed.

THE ADJACENCY MATRIX

The ad]acency matrix A = [a;] of a labeled graph G with p points is the
p X p matrix in which a;; = 1ifv; is adjacent with v; and a;; = 0 otherwise.
Thus there is a one-to- one correspondence between labeled graphs with p
points and p x p symmetric binary matrices with zero diagonal.

Figure 13.1 shows a labeled graph G and its adjacency matrix 4. One

immediate observation is that the row sums of A4 are the degrees of the points

of G. In general, because of the correspondence between graphs and matrices,
any graph-theoreticconcept isreflected in the adjacency matrix. Forexample,
recall from Chapter 2 that a graph G is connected if and only if there is no

partition ¥ = V; u ¥, of the points of G such that no line joins a point of V;

with a point of ¥,. Inmatrix terms we may say that G is connected if and only
if there is no labeling of the points of G such that its adjacency matrix has the

reduced form
_ |41 O
4= [ 0 Azz]’
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Fig. 13.1. A labeled graph and its adjacency matrix.

where A,, and 4,, are square. If A, and A4, are adjacency matrices which
correspond to two different labelings of the same graph G, then for some
permutation matrix P, 4, = P~'4,P. Sometimes a labeling is irrelevant,
as in the following results which interpret the entries of the powers of the
adjacency matrix.

. Theorem 13.1 Let G be a labeled graph with adjacency matrix A. Then the

i, j entry of A" is the number of walks of length » from v; to v;.

Corollary 13.1(a) For i # j, the i,j entry of 4% is the number of paths of
length 2 from v; to v;. The i, i entry of A is the degree of v; and that of 4°
is twice the number of triangles containing v;.

Corollary 13.1(b). If G is connected, the distance between v; and v; for i # j

is the least integer n for which the i, j entry of A" is nonzero.

The adjacency matrix of a labeled digraph D is defined similarly: 4 =
A(D) = [a;;] has a;; = 1 if arc vp; is in D and is O otherwise. Thus A4(D)
is not necessarily symmetric. Some results for digraphs using A(D) will
be given in Chapter 16. By definition of A(D), the adjacency matrix of a

given graph can also be regarded as that of a symmetric digraph. We now.

apply this observation to investigate the determinant of the adjacency
matrix of a graph, following [H27].

A linear subgraph of a digraph D is a spanning subgraph in Wthh each
point has indegree one and outdegree one. Thus it consists of a disjoint

_ spanning collection of directed cycles.

Theorem 13.2 If D is a digraph whose linear subgraphs are D;, i = 1, -, n,
and D; has e even cycles, then '

det A(D) = Z (= 1),

Every graph G is associated with that digraph D with arcs v;p; and v
whenever v; and v; are adjacent in G. Under this correspondence, each lmear
subgraph of D ylelds a spanning subgraph of G consisting of a point disjoint
collection of lines and cycles, which is called a linear subgraph of a graph.
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Those components of a linear subgraph of G which are lines f:orrespond to
~ the 2-cycles in the linear subgraph of D in a one-to-ong fashion, but t.hose
components which are cycles of G correspond to two directed cyclf:s in D.
Since A(G) = A(D) when G and D are related as above, the determinant of
A(G) can be calculated.

Corollary 13.2(a) If G is a graph whose linear subgraphsare G;,i =1, -, n,
where G; has e; even components and ¢, cycles, then

det A(G) = 3" (— 1%
i=1

THE INCIDENCE MATRIX

A second matrix, associated with a graph G in which the points and lines are
labeled, is the incidence matrix B = [b;]. Thisp x g matFix has b;; =1
if v; and x; are incident and b;; = O otherwise. As with the adjacency matrix,
the incidence matrix determines G up to isomorphism. In fact any p — 1
‘rows of B determine G since each row is the sum of all the others modulo 2.

The next theorem relates the adjacency matrix of the line graph of G to

the incidence matrix of G. We denote by BT the transpose of matrix B,
Theorem 13.3 For any (p, q) gfaph G with incidence matrix B,
A(L(G) = B"B - 2I,.

Let M denote the matrix obtained from — A by replacing the ith .diagonal
entry by deg v;. The following theorem is contained in the pioneering work
of Kirchhoff [K7].

Theorem 13.4 (Matrix-Tree Theorem) Let G be a connected labeled graph
with adjacency matrix 4. Then all cofactors of the matrix M are equal and
their common value is the number of spanning trees of G.

Proof. We begin the proof by changing either of the two I’s in each column
of the incidence matrix B of G to — 1, thereby forming a new matrix E. (We
will see in Chapter 16 that this amounts to arbitrarily orienting the lines of
G and taking E as the incidence matrix of this oriented graph.)

The i, j entry of EET is eye; + €i2€j2 + *** + eye;;, which has the
value deg v; if i = j, —1 if v, and v; are adjacent, and O otherwise. Hence
EET = M. .

Consider any submatrix of E consisting of p — 1 of its columns. ThlS
p x (p — 1) matrix corresponds to a spanning subgraph H 9f G ha}vmg
p — I lines. Remove an arbitrary row, say the kth, from this matrix to
obtain a syuare matrix F of order p — 1. We will show that |det F| is 1 or

-0 according as H is or is not a tree. First, if H is not a tree, then beca}lse
H has p points and p — 1 lines, it is disconnected, implying that there is a
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component not containing v,. Since the rows corresponding to the points of
this component are dependent, det F = 0. On the other hand, suppose His a
tree. In this case, we can relabel its lines and points other than v, as follows :
Letu, # v, bean endpoint of H (whose existence is guaranteed by Corollary
4.1(a)), and let y, be the line incident with it; let U, # v, be any endpoint of
H — u, and y, its incident line, and so on. This relabeling of the points and
lines of H determines a new matrix F’ which can be obtained by permuting
the rows and columns of F independently. Thus |det F'| = |det F |. However,

F'islower triangular with every diagonal entry +1 or — 1 ;hence, [det F| = 1.

The following algebraic result, usually called the Binet-Cauchy Theorem,
will now be very useful.

Lemma 13.4(a) If P and Qarem x nandn x m matrices, respectively, with

m < n, then det PQ is the sum of the products of corresponding major
determinants of P and 0.

(A major determinant of P or Q has order m, and the phrase “corre-
sponding major determinants” means that the columns of P in the one
determinant are numbered like the rows of Q in the other.)

We apply this lemma to calculate the first principal cofactor of M.
Let E, be the (p — 1) x g submatrix obtained from E by striking out .its
first row. By letting P = E, and Q = E7, we find, from the lemma, that the
first principal cofactor of M is the sum of the products of the corre-
spondin g major determinants of E 1 and ET. Obviously, the corresponding
major determinants have the same value. We have seen that their product is
lifthe columns from E 1 correspond to a spanning tree of G and is O otherwise.
Thus the sum of these products is exactly the number of spanning trees.

The equalj!y- of all the cofactors, both principal and otherwise, holds for

every matrix whose row sums and column sums are all Zero, completing the
proof.

To illustrate the Matrix-Tree Theorem, we consider a labeled graph G
taken at random, say K, — x. This graph, shown in Fig. 13.2, has eight
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Fig. 13.3. Two graphs with the same cycle matrix.

spanning trees, since the 2,3 cofactor, for example,

i -l “i ‘(1) 3 -1 -1
of M= |~ -7 is —|—-1 =1 —=1|=38.
-1 -1 3 -1 L o a2

-1 0 -1 2
The number of labeled trees with p points is easily found by applyin‘g the
Matrix-Tree Theorem to K,. Each principal cofactor is the determinant

of orderp — 1:
p—1 -1 - - - =1
-1 p-1 - - . =1

-1 -1 - - - p-1
Subtracting the first row from each of the others and adding the last p — 2
columns to the.first yields an upper tnangular matrix whose determinant
is pP~2. ~
Corollary 13.4(a) The number of labeled trees with p points is p? -2,

There appear to be as many different ways of proving this fqrm}lla as
there are independent discoveries thereof. An interesting compilation of
such proofs is presented in Moon [M15].

THE CYCLE MATRIX ,

Let G be a graph whose lines and cycles are labeled. The cycle matrix
= [c;;] of G has a row for each cycle and a column for each line with

= 1 if the ith cycle contains line x; and ¢;; = 0 otherwise. Ir.contrast to

the adjacency and incidence matnces the cycle matrix does not determine
a graph up to isomorphism. Obviously the presence or absence of lines
which lie on no cycle is not indicated. Even when such lines are excluded,
however, C does not determine G, as is shown by the pair of graphs in Fig. 13.3,
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which both have cycles ,

Zy = {xy, X3 X3} Zy = {x2 X4 X5, X6}
Z3 = {x¢ X7, X3} Zy = {xy, X3, X4, X5, Xg}
Zs = {x3, X4, X5, X7, xg} Zg = {xy, X3, X4 X5, X7, Xg}
and therefore share the cycle matrix

Xy Xy X3 X4 X5 Xg Xq Xg

(1 1100 0 0 0]z,
0101110 0|2z,
c- (00000 11 1]z
101 11100]2z
0101101 1}2
(1 01 1101 1]2Z

The next theorem provides a relationship between the cycle and incidence
matrices. In combinatorial topology this result is described by saying that
the boundary of the boundary of any chain is zero.

Theorem 13.5 If G has incidence matrix B and cycle matrix C, then
CBT = 0 (mod 2). -

Proof. Consider the ith row of C and jth column of BT, which is the jth row
of B. The rth entries in these two rows are both nonzero if and only if x, is
in the ith cycle Z; and is incident with v;. If x, is in Z,, then v; is also, but-
if v; is in the cycle then there are two lmes of Z; incident with v; so that the
i, Jentry of CBTis 1 + 1 = 0(mod 2).

Analogous to the cycle matrix, one can define the cocycle matrix C*(G)..
If G is 2-connected, then each point of G corresponds to the cocycle (minimal
cutset) consisting of the lines incident with it. Therefore, the incidence matrlx
of a block is contained in its cocycle matrix.

Since every row of the incidence matrix B is the sum modulo 2 of the
other rows, it is clear that the rank of Bis at most p — 1. On the other hand,
if the rank of Bis less than p — 1, then there is some set of fewer than p rows
whose sum, modulo 2, is zero. But then there can be no line j joining a point
in the set belonging to those rows and a point not in that set, so G cannot be
connected. Thus we have one part of the next theorem. The other parts
follow directly from the results in Chapter 4 which give the dimensions of the
cycle and cocycle spaces of G.

Theorem 13.6 For a connected graph G, the ranks of the cycle, incidence,
and cocycle matrices are (C) = g — p + land n(B) = r(C*) = p — 1.

In view of Theorem 13.6, an important submatrix of the cycle matrix C
of a connected graph is given by any m = g — p + 1 rows representing a
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U3 X3 Us b3, *3 v

Fig. 13.4. A graphanda spanning tree.

cycle basis. Each such reduced matrix Co(G)isanm x g submatrix of C,and
similarly a reduced cocyle matrix C*(G) is m* x g, where m* =p— L

Then by Theorem 13.5, we have immediately CC*T = 0 (mod 2) and hence

also CoC4T = 0(mod 2). A reduced incidence matrix Bo is obtgingd from B
by deletion of the last row. By an earlier remark, no information is lost by
so reducing B. '

If the cycles and cocycles are chosen in a special way, then‘ the reduc‘ed
incidence, cycle, and cocycle matrices of a graph have partxgularly nice
forms. Recall from Chapter 4 that any spanning tree T determines a cycl‘e
basis and a cocycle basis for G. In particular, if X; = {x1 Xg, """ Xp- 1}.1s
the set of twigs (lines) of T, and X, = {xp Xps1s """ x,} is the set of its
¢hords, then there is a unique cycle Z; inG—-X,+x,p<i< q,.and a
unique cocycle Z¥in G — X; + X5 1 <j<p- 1 andthese collec’uqns of
cycles and cocycles form bases for their respeqtive spaces. For example, in the
graph G of Fig. 13.4 the cycles and cocycles determined by the particular
spanning tree T shown are

Zy = {xla X2s Xd-}’ ZT = {xla X4, xs}a
Zs = {x1, X2 X3, x5}> zZ3 = {xz, X4 X5}
Z% = {xa, X5}

The reduced matrices, which are determined both by G and the choice of T,
are:
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and X, X,
A~
zr[1 0 0,1 1]
C¥G,T)=2z3|0 1 0i1 L}

] z5{0 0 1,0 1

It is easy to see that this is a special case of the following equations (all
modulo 2) which hold for any connected graph G and spanning tree T :

'Xl XZ Xl XZ
o~ ~~— =
By = By(G, T) = [B, Bz]a Co=0Co(G,T) = [C, 1],
and
X, X,
~~ =
6 =C8GT)= [IM* C;],
where CT = By 'B, = Cf and C} = B7'B, = [I,. CT]. It follows from

these equations that, given G and T, each of the partitioned matrices By,
Co, and C¥ determines the other two.

Excursion—Matroids Revisited

The cycle and cocycle matrices are particular representations of the cycle
matroid and cocycle matroid of a graph, introduced in Chapter 4. A matroid
is called graphical if it is the cycle matroid of some graph, and cographical if it
is a cocycle matroid. Tutte [T12] has determined which matroids are
graphical or cographical, thereby inadvertently solving a previously open
problem in electric network theory.

The smallest example of a matroid which is not graphical or cographical is
the self-dualf matroid obtained by taking M = {1, 2, 3, 4} and the circuits -
all 3-element subsets of M.

Fig. 13.5. The new circuits in the whirl of Ws.

Another example, Tutte [T19], of a matroid which is not graphical
involves the wheel W,,, = K, + C,. Its cycle matroid has n*> — n + 1
circuits since there are that many cycles in a wheel. If in this matroid we
remove from the collection of circuits the cycle C, which forms the rim of the
wheel, and add to it all of the “spoked rims” (the sets of lines in the subgraphs
shown in Fig. 13.5), then it can be shown that the result is a new matroid
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which is not graphical or cographical. This is called a whirl of order n and is
generated by n” circuits.

Even if a matroid is graphical, it need not be cographical. For example,
the cycle matroid of K s is not cographical. Infacta matroid is both graphical
and cographical if and only if it is the cycle matroid of some planar graph.

EXERCISES

13.1 a) Characterize the adjacency matrix of a bipartite graph.
b) A graph G is bipartite if and only if for all odd n every diagonal entry of 4"is 0.

132 Let G bea connected graph with adjacency matrix 4. What can be said about A4 if
a) v, is a cutpoint?
b) vw; is a bridge?
133 If ¢,(G) is the number of n-cycles of a graph G with adjacency matrix 4, then
a) ¢5(G) = §tr(4?). »
b) ca(G) = (4% — 29 — 224 a]).
0) ¢s(G) = Toltr(4®) — 5tr(4%) — 5 B2 (Z, @y — 2)al’].
(Harary and Manvel [HM1])

134 a) If G is a disconnected labeled graph, then every cofactor of M is 0.
b) If G is connected, the number of spanning trees of G is the product of the
number. of spanning trees of the blocks of G.

(Brooks, Smith, Stone, and Tutte [BSST1])

135 Let G be a labeled graph with lines x,, X, - -, x,. Define the p X p matrix
M. = [mij] by
— X if x, = vp;
my; = . ) for i#j,
0 if v, and v; are not adjacent

—my = Z My
n#i
By the term of a spanning tree of G is meant the product of its lines. The tree polynomial
of G is defined as the sum of the terms of its spanning trees.
The Variable Matrix Tree Theorem asserts that the value of any cofactor of the
matrix M is the tree polynomial of G.

13.6 Do there exist two different graphs with the same cycle matrix which are smaller
than those in Fig. 13.3?

13.7 The “cycle-matroid” and “cocycle-matroid” of a graph do indeed satisfy the
first definition of matroid given in Chapter 4.

13.8 Two graphs G, and G, are cospectral if the polynomials det (4, —tI) and -

det (4, — tf) are equal. There are just two different cospectral graphs with 5 points.
) (F. Harary, C. King, and R. C. Read)

13.9 If the eigenvalues of A(G) are distinct, then every nonidentity automorphism of
G has order 2. (Mowshowitz [M17])

o
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13.IQ Let f(¢) be a polynomial of minimum degree (if any) such that every entry of
f(A) is 1, where A is the adjacency matrix of G. Then agraph has such a polynomial if
and only if it is connected and regular. (Hoffman [H45])
13.11 An eulerian matroid has a partition of its set S of elements into circuits.
a) A graphical matroid is eulerian if and only if it is the cycle matroid of an
eulerian graph, '
b) Not every eulerian matroid is graphical.

13.12 In a binary matroid, the intersection of every circuit and cocircuit has even
cardinality. Every cocircuit of a binary eulerian matroid has even cardinality. In other
words, the dual of a binary eulerian matroid is a “bipartite matroid,” defined as expected.

(Welsh [W9])




