Pasar al contenido principal
Inicio Departamento de Ciencias de la Computación Logo LCC
Depto. de Ciencias de la Computación
Departamento de Ciencias de la Computación
Facultad de Ciencias Exactas, Ingeniería y Agrimensura
Universidad Nacional de Rosario
Logo FCEIA Logo UNR

Menú principal

  • Inicio
  • Departamento
  • LCC
  • Materias
  • Ingresantes
  • Docentes

Formulario de búsqueda

Login Menu

  • Login

Idiomas

  • Es
  • En

Usted está aquí

Inicio » LCC » Tesinas de Grado » Tesinas
  • Materias
  • Perfil y Plan
  • Jornadas de Cs. de la Computación
  • Tesinas de Grado
    • Propuestas
    • Tesinas
  • El Proyecto PROMINF‐LCC‐FCEIA
  • Lista de correo

Selección de variables en problemas anchos con alta correlación

Autor: 
Mauro Di Masso
Fecha Defensa: 
16/05/2014
Resumen: 
El aprendizaje automatizado es un área de la inteligencia artificial que ha estado en auge desde hace ya varios años. Su utilidad en la creación de modelos de predicción en base a observaciones ha generado el surgimiento de múltiples métodos de entrenamiento. Sin embargo, la complejidad de los problemas de hoy en día los hace impracticables por el mero número de variables en juego (problemas anchos). Los métodos de selección de variables ayudan a corregir esto eliminando de la ecuación variables irrelevantes y redundantes que dificultan tanto el modelado como su interpretación. En esta tesina se analiza la problemática de la correlación entre variables en problemas anchos considerando algoritmos recientes y se presenta uno propio, teniendo no sólo en cuenta la selección de variables independientes y relevantes sino también la estabilidad de la misma.
Institución: 
FCEIA-UNR
Director: Pablo M. Granitto
Tesina: 
Icono PDF 66.pdf

Contacto

Administración: webmasterlcc@fceia.unr.edu.ar
Preguntas: ingrlcc@fceia.unr.edu.ar

Logo FCEIA Logo UNR
  • Inicio
  • Departamento
  • LCC
    • Materias
    • Perfil y Plan
    • Jornadas de Cs. de la Computación
    • Tesinas de Grado
      • Propuestas
      • Tesinas
    • El Proyecto PROMINF‐LCC‐FCEIA
    • Lista de correo
  • Materias
  • Ingresantes
  • Docentes
Diseñado por
Sitemap